AlphaGo完胜! 其算法有优势的同时有何缺陷?

               2016年3月12日人机大战第三局,AlphaGo执白176手中盘胜 李世石,以3:0的比分提前取得了对人类的胜利。


这一局李世石败得最惨,早早就被AlphaGo妙手击溃,整盘毫无机会。最后李世石悲壮地造劫,在AlphaGo脱先之后终于造出了紧劫。但AlphaGo只靠本身劫就赢得了劫争,粉碎了AlphaGo不会打劫的猜想。这一局AlphaGo表现出的水平是三局中最高的,几乎没有一手棋能被人置疑的,全是好招。三局过去,AlphaGo到底实力高到什么程度,人们反而更不清楚了。


看完这三局,棋界终于差不多绝望了,原以为5:0的,都倒向0:5了。有些职业棋手在盘算让先、让二子是否顶得住。整个历程可以和科幻小说《三体》中的黑暗战役类比,人类开始对战胜三体人信心满满,一心想旁观5:0的大胜。一场战斗下来人类舰队全灭,全体陷入了0:5的悲观失望情绪中。


我也是纠结了一阵子,看着人类在围棋上被机器碾压的心情确实不好。但是承认机器的优势后,迅速完成了心理建设,又开心地看待围棋了。其实挺容易的,国际象棋界早就有这样的事了。这个可以等五盘棋过后写。


现在我的感觉是,棋界整体还是对AlphaGo的算法以及风格很不适应。一开始轻视,一输再输,姿态越来越低,三盘过后已经降到一个很低迷沉郁的心理状态了。这也可以理解,我一个围棋迷都抑郁了一会,何况是视棋如生命的职业棋手。但是不管如何,还是应该从技术的角度平心静气地搞清楚,AlphaGo到底是怎么下棋的,优势到底在哪些,是不是就没有一点弱点了?

fdty8 (89).png

现在有了三盘高水平的棋谱,质量远高于之前和樊麾的五盘棋谱。还有谷歌2016年1月28号发表在《自然》上的论文,介绍了很多技术细节,还有一些流传的消息,其实相关的信息并不少,可以作出一些技术分析了。


之前一篇文章提到,从研发的角度看,谷歌团队把15-20个专家凑在了一起,又提供了巨量的高性能计算资源,建立起了整个AlphaGo算法研究的“流水线”。这样谷歌团队就从改程序代码的麻烦工作中解放出来,变成指挥机器干活,开动流水线不断学习进步,改善策略网络价值网络的系数。而且这个研发架构似乎没有什么严重的瓶颈,可以持续不断地自我提升,有小瓶颈也可以想办法再改训练方法。就算它终于遇到了瓶颈,可能水平也远远超过人类了。


这些复杂而不断变动的神经网络系数是AlphaGo的独门绝技,要训练这些网络,需要比分布式版本对局时1200多个CPU多得多的计算资源。AlphaGo算法里还是有一些模块代码是需要人去写的,这些代码可不是机器训练出来的,再怎么训练也改不了,谷歌团队还不可能做到这么厉害。例如蒙特卡洛搜索(MCTS)整个框架的代码,例如快速走子网络的代码。这里其实有两位论文共同第一作者David Silver和Aja Huang多年积累的贡献。这些人写的代码,就会有内在的缺陷,不太可能是完美无缺的。这些缺陷不是“流水线”不眠不休疯狂训练能解决的,是AlphaGo真正的内在缺陷,是深度学习、self-play、进化、强化学习这些高级名词解决不了的。谷歌再能堆硬件,也解决不了,还得人去改代码。


第一局开局前,谷歌就说其实还在忙着换版本,最新版本不稳定,所以就用上一个固定版本了。这种开发工作,有可能就是人工改代码消除bug的,可能测试没完,不敢用。


总之,像AlphaGo这么大一个软件,从算法角度看存在bug是非常可能的。在行棋时表现出来就是,它突然下出一些不好的招数,而且不是因为策略网络价值网络水平不够高,而是MCTS框架相关的搜索代码运行的结果。如果要找AlphaGo潜在的bug,需要去仔细研究它的“搜索 ”。这可能是它唯一的命门所在,而且不好改进。


那么MCTS的好处坏处到底是什么?幸运的是,Zen和CrazyStone等上一代程序,以及facebook田渊栋博士开发的Darkforest都用了MCTS。它们和AlphaGo虽然棋力相差很远,但是行棋思想其实很相似,相通之处远比我们想象的高得多。


Tags:国际象棋

额 本文暂时没人评论 来添加一个吧

发表评论

必填

选填

选填

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。